

	Quarter 1		Quarter 2			Ouarter 3	Quarter 3 Quarter 4					
						_	-					
Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8	Unit 9	Unit 10	Unit 11	Unit 12	
One Dimensional Kinematics	Two Dimensional Kinematic	Forces	Work and Energy	Momentum	Circular Motion and Gravitation	Heat Energy and Thermo.	Electric Forces, Fields and Energy	Capacitors, Resistors and Circuits	Waves and Sound	Light and Light Behaviors	Nuclear Physics	
3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	4 weeks	2 weeks	
	UNIT 4: Work and Energy [3 week] Overarching Question(s) What is meant by conservation of energy? How is energy transferred between objects or systems? Lesson Length											
Unit, Lesson				E:	ssential Questio	n			Vocabulary			
Unit 4 Work and Energy		1 week		energ ● In wh	do you know so	witness the	Rocketr	otential & Kinetic Er y, Collisions	nergy, Conserva	ation of Energy, I	Momentum	
Standards an	nd Related Back	ground Info	rmation	In	Instructional Focus Instructi			uctional Res	ources			

Learning Outcomes	Curricular Materials
Relate the variables of work, power, kinetic energy, and potential energy to	Engage
mechanical situations and solve for	<u>Explore</u>
 these variables. Use mathematical representations to support the claim that the total 	<u>Explain</u>
momentum of a system of objects is conserved when there is no net force on	<u>Elaborate</u>
the system.	Evaluate
	Collisions
	<u>Curricular Materials</u>
	HMH Physics – Work and Energy Chapter 5
	Bung Jumping: Energy
	https://my.hrw.com/content/hmof/science/hss2017/tn/gr9- 12/hmd phy 9781328833716 /teacher/tabpages/teacher/data/chap0 5/hssp0502t stem.pdf
	Graphing Calculator: TI-83/84 Graphing Calculator Activity Guide Sheet: Motion in One Dimension:
	https://my.hrw.com/content/hmof/science/hss2017/tn/gr9- 12/hmd phy 9781328833716 /teacher/tabpages/teacher/data/chap0
	2/graphing calculator/hssp0200t graphcalc ti84.pdf
	Virtual Lab:
	Work and Energy:
	https://my.hrw.com/content/hmof/science/hss2017/tn/gr9- 12/hmd phy 9781328833716 /nsmedia/polyhedron virtual labs/wor
	kandmechanicalenergy/wmehomeframeset.html
	 Relate the variables of work, power, kinetic energy, and potential energy to mechanical situations and solve for these variables. Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on

8. Obtaining, evaluating, and communicating information <u>Cross Cutting Concepts:</u> Energy and Matter	Web Resource- http://hmdscienceexplore.hmhco.com/physics/ch05/
	Additional Resources:
	ACT & SAT
	TN ACT Information & Resources
	SAT Connections
	SAT Practice from Khan Academy

			1							r			
	Quarter 1			Quarter 2 Quar			Quarte	rter s			Quarter 4	Quarter 4	
Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit	8	Unit 9	Unit 10	Unit 11	Unit 12	
One Dimensional Kinematics	Two Dimensional Kinematic	Forces	Work and Energy	Momentum	Circular Motion and Gravitati on	Heat Energy and Thermo.	Electric Forces, Fields and Energy		Capacitors, Resistors and Circuits	Waves and Sound	Light and Light Behaviors	Nuclear Physics	
3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	3 weeks	2 weeks	4 weeks		3 weeks	3 weeks	4 weeks	2 weeks	
					at is meant	rching Question(s	f energy?	tems?					
Unit, Lesso	n Les	son Leng	th		How is energy transferred between objects or systems? Essential Question					Vocabulary			
Unit 4		1 week		Essential Que	<u>stions</u>			Vocabu	ılary				
Work and Energy			 What are some situations in which conservation of mechanical energy is valid? Learning Outcomes Given various examples of quantities, categorize them as scalar or vector quantities. Given a projectile launched at an angle, select the correct equation from a list for 			es, angle,	potent potent power,	kinetic energy, v ial energy, gravi ials energy, spri , momentum, im n, elastic collisio	tational pong constar ng constar npulse, per	otential ener	gy, elastic al energy,		

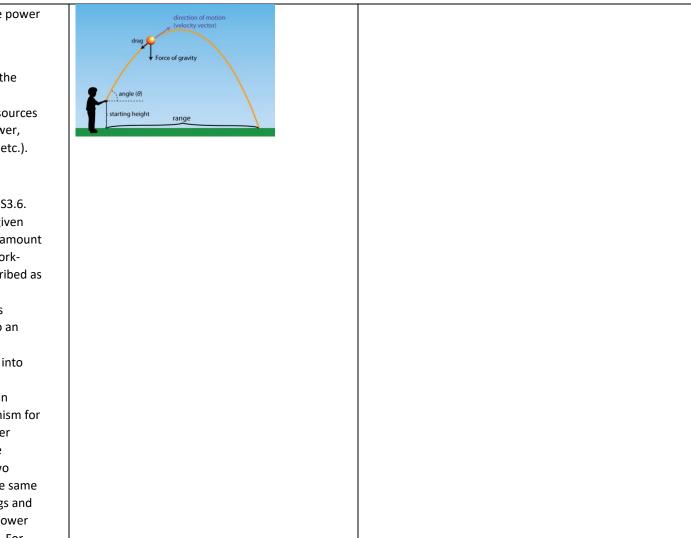
 calculating: the maximum height of travel, time of flight and/or the maximum horizontal distance covered. Given a scenario where a projectile is being launched at an angle, answer the following conceptual questions. 	Curricular Materials HMH Physics – Work and Energy - Chapter 5-Section-3 Conservation of Mechanical Energy Lab: https://my.hrw.com/content/hmof/science/hss2017/tn/gr9 = 12/hmd phy 9781328833716 /teacher/tabpages/teacher/ data/chap05/hssp0503t_coreskilllab.pdf Graphing Calculator: TI-83/84 Graphing Calculator Activity Guide Sheet: Motion in One Dimension: https://my.hrw.com/content/hmof/science/hss2017/tn/gr9 = 12/hmd_phy_9781328833716 /teacher/tabpages/teacher/ data/chap02/graphing_calculator/hssp0200t_graphcalc_ti8 4.pdf
	Virtual Lab: Conservation of Energy: https://my.hrw.com/content/hmof/science/hss2017/tn/gr9 _ 12/hmd_phy_9781328833716 /nsmedia/polyhedron_virtu al_labs/conservationofenergy/coehomeframeset.html Web Resource- http://hmdscienceexplore.hmhco.com/physics/ch05/ Additional Resources:

Standards and Related Background Information	Instructional Focus	ACT & SAT TN ACT Information & Resources SAT Connections SAT Practice from Khan Academy Instructional Resources
DCIPHYS.PS3: EnergyStandardPHYS.PS3.3 Use the principle of energy conservation and mathematical representations to quantify the change in energy of one component of a system when the energy that flows in and out of the system and the change in energy of the other components is known.Explanation In PHYS.PS3.1 students quantify the various types of energy and consider methods for energy transfer. If a student is able to evaluate the total energy of a system, such evaluations before and after a change to a system provide a mechanism to show that energy of a system	 How can understanding various physical properties about motion be useful in understanding everyday occurrences? What variables can you manipulate to affect the movement of objects? 	Curricular Materials HMH Physics – Motion in One Dimension - Chapter 2 Acceleration Lab: https://my.hrw.com/content/hmof/science/hss2017/tn/gr9 - 12/hmd_phy_9781328833716_/teacher/tabpages/teacher/ data/chap02/hssp0202t_probewarelab.pdf
has been conserved. For example, students might use pie charts to show the distribution of the total energy. For an object about to		

freefall, the pie chart might be 100%	
gravitational potential energy. Mid-descent,	
the energy might be half gravitational potential	
energy and half kinetic energy. After colliding	
with the ground, the total energy may have	
decreased, which can be represented as heat	
energy lost from the pie chart.	
<u>Misconceptions</u>	
• Conservation of mechanical energy with the general energy conservation law.	
Science and Energy Practices	
Mathematical Computational Thinking	
Cross Cutting Concepts	
Systems and System Models	

					-	Quarter 2 Curric		р				
				<u>Cı</u>	urriculum M	ap Feedback	<u>Survey</u>					
	Quarter 1			Quarter 2			Quar	rter 3			Quarter 4	
Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit	: 8	Unit 9	Unit 10	Unit 11	Unit 12
One Dimensional Kinematics	Two Dimensional Kinematic	Forces	Work and Energy	Momentum	Circular Motion and Gravitation	Heat Energy and Thermo.	Electric Forces, Fields and Energy		Capacitors, Resistors and Circuits	Waves and Sound	Light and Light Behaviors	Nuclear Physics
3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	3 weeks	2 weeks	4 weeks		3 weeks	3 weeks	4 weeks	2 weeks
					UNIT 4: Work	and Energy [3 v	veeks]					
					Overarc	ning Question(s)					
						conservation o	•.	tems?				
Unit, Lessor	n Les	son Leng	th	Essential Question				Vocabulary				
Unit 4		1 week		Essential Que			Vocabulary					
Work and Energy	Energy work and en		and energy? can we calcula	nd energy? potential e n we calculate power in two potentials o				tional pote constant, r	ntial energy, e mechanical en	lastic ergy,		
								<u>Curricu</u>	lar Materials			

		HMH Physics – Work and Energy - Chapter 5-Section-4
		Graphing Calculator:
		TI-83/84 Graphing Calculator Activity Guide Sheet: Motion
		in One Dimension:
		https://my.hrw.com/content/hmof/science/hss2017/tn/gr9
		-
		12/hmd_phy_9781328833716_/teacher/tabpages/teacher/
		data/chap02/graphing_calculator/hssp0200t_graphcalc_ti8
		4.pdf Virtual Lab:
		Web Resource
		http://hmdscienceexplore.hmhco.com/physics/ch05/
		Additional Resources:
		ACT & SAT
		TN ACT Information & Resources
		SAT Connections
		SAT Practice from Khan Academy
Standards and Related Background	Instructional Focus	Instructional Resources
Information		
DCI	Learning Outcomes	Curricular Matariala
	 Define power and give its unit. 	Curricular Materials
PHYS.PS3: Energy	 Give the relationship between work and 	HMH Physics – Motion in One Dimension - Chapter 2
Standard	power	Acceleration Lab:
	Relate the variables of work, power, kinetic	
PHYS.PS3.6 Define power and solve	energy, and potential energy to mechanical	https://my.hrw.com/content/hmof/science/hss2017/tn/gr9
problems involving the rate of energy	situations and solve for these variables.	
production or consumption (P = $\Delta E/\Delta t$).	Phenomenon	12/hmd phy 9781328833716 /teacher/tabpages/teacher/
Explain and predict changes in power		data/chap02/hssp0202t_probewarelab.pdf
consumption based on changes in energy		



demand or elapsed time. Investigate power consumption and power production systems in common use.

PHYS.PS3.15 Compare and contrast the process, design and performance of numerous next -generation energy sources (hydropower, wind power, solar power, geothermal power, biomass power, etc.).

Explanation

This standard pairs well with PHYS.PS3.6. Students should understand that a given task will require a certain minimum amount of energy. In accordance with the workenergy theorem, this would be described as work done on the system. Power incorporates a rate element into this discussion. An object can be lifted to an identical height by two different mechanisms. The total energy input into the system (the object and Earth's gravitational field) will be the same in either case. However, if one mechanism for lifting the object does this in a smaller amount of time, it is said to be more powerful. Students may compare two different devices that accomplish the same task, but have different power ratings and explain the impact of the different power ratings on how the devices are used. For

example, two microwaves might both pop	
a bag of popcorn, but a more powerful	
microwave might do it faster or be more	
likely to burn the popcorn at recommended	
time settings.	
The physics phenomena explored	
throughout this course are utilized	
engineers in designing energy capturing	
systems that are not reliant on non-	
renewable resources. Students can	
research these processes and relate them	
to both the scientific principles underlying	
the various processes, as well as	
implications of system design and efficiency	
behind improvements to these processes	
over time.	
<u>Misconceptions</u>	
Often students make the mistake of thinking	
force is the same as work and power. Yet force	
is a vector quantity (meaning it includes	
direction), work is a scalar quality (meaning it	
does not include direction), and power	
describes the time rate of doing work. Learn	
more and teach your students the difference	
between the three with an activity in UCLA's	
Force, Work and Power.	
Science and Engineering Practice	

Obtaining, evaluating, and communicating	
information	
Cross Cutting Concepts	
Energy and Matter	

	Physics Quarter 2 Curriculum Map												
	Curriculum Map Feedback Survey												
	Quarter 1			Quarter 2			Quarter 3	orter 3 Quarter 4					
Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8	Unit 9	Unit 10	Unit 11	Unit 12		
One Dimensional Kinematics	Two Dimensional Kinematic	Forces	Work and Energy	Momentum	Circular Motion and Gravitation	Heat Energy and Thermo.	Electric Forces, Fields and Energy	Capacitors, Resistors and Circuits	Waves and Sound	Light and Light Behaviors	Nuclear Physics		
3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	4 weeks	2 weeks		
					UNIT 5: Mo	omentum [3 we	ek]						
					Overarc	hing Question(s)						
		Hov	v can one	explain and pre	dict interactio	ns between obj	ects and within s	ystems of objects	?				
Unit, Lesson Lesson Length			Essential Question					Vocabulary	1				
Unit 5 1 week Momentum			¢	Essential Que	<u>stions</u>		Vocab	ulary					

	 How can understanding various physical properties about motion be useful in understanding everyday occurrences? how the momentum of an object can be increased or decreased? how objects with greatly different masses can have the same momentum? What variables can you manipulate to affect the movement of objects? 	Momentum, impulse, perfectly inelastic collision, elastic collision
Standards and Related Background Information	Instructional Focus	Instructional Resources
	Learning Outcomes	
DCI PS2: Motion and Stability: Forces and Interactions PS3: Energy	Given the mass, velocity and time it takes to stop an object in an inelastic collision, determine the momentum and impulse of the collision. Analyze and solve problems related to elastic and inelastic collisions related to change in	Curricular Materials HMH Physics – Momentum and Collisions - Chapter 6- Section1 Momentum and Impulse Lab: https://my.hrw.com/content/hmof/science/hss2017/tn/gr9
<u>Standard</u> PHYS.PS3.4 Assess the validity of the law of conservation of linear momentum (p=mv) by	momentum. <u>Phenomenon</u>	- 12/hmd_phy_9781328833716 /nsmedia/polyhedron_virtu al labs/momentumandimpulse/mihomeframeset.html Graphing Calculator: TI-83/84 Graphing Calculator Activity Guide Sheet: Motion
planning and constructing a controlled scientific investigation involving two objects moving in one -dimension. <u>Explanation</u>		in One Dimension: <u>https://my.hrw.com/content/hmof/science/hss2017/tn/gr9</u> <u>12/hmd_phy_9781328833716_/teacher/tabpages/teacher/</u>

Momentum is a useful tool when considering	data/chap02/graphing calculator/hssp0200t graphcalc ti8
conservation of energy when two objects	<u>4.pdf</u>
interact. Attempts to quantify all energy	
transformation in such a system often fail to	Virtual Lab:
account for energies lost due to the production	https://my.hrw.com/content/hmof/science/hss2017/tn/gr9
of sound and heat. Collisions where energy is	-
dissipated from the system are known as	- 12/hmd phy 9781328833716 /nsmedia/polyhedron virtu
inelastic collisions. Though system energy may	al labs/index.html
be lost to the surroundings, the conservation of	
momentum will still be observed. Thus the	
conservation of momentum can provide a tool	Web Resource-
to evaluate inelastic collisions.	http://hmdscienceexplore.hmhco.com/physics/ch06/
	Additional Resources:
	ACT & SAT
Misconceptions	TN ACT Information & Resources
	SAT Connections
1. Momentum is the same as force.	SAT Practice from Khan Academy
2. Conservation of momentum applies	
only to collisions.	

	Physics Quarter 2 Curriculum Map												
	Curriculum Map Feedback Survey												
Quarter 1 Quarter 2 Quar								rter 3			Quarter 4		
Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Un	it 8	Unit 9	Unit 10	Unit 11	Unit 12	
One	Two	Forces	Work	Momentum	Circular	Heat Energy	Electric		Capacitors,	Waves	Light and	Nuclear	
Dimensional Kinematics	Dimensiona Kinematic		and Energy		Motion and Gravitation	nd and E		, Fields nergy	Resistors and Circuits	and Sound	Light Behaviors	Physics	
3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	3 weeks	3 weeks 2 weeks 4 we			3 weeks	3 weeks	4 weeks	2 weeks	
					UNIT 5: Mo	omentum [1 we	ek]						
	Overarching Question(s)												
	How can one explain and predict interactions between objects and within systems of objects?												
Unit, Less	on	Lesson Length Essential Question						Vocabulary					
Unit 5		1 week	(Essential Que	l Questions Vocabulary								
Momentu	um					ced by changes in t ngth of time the for							

Standards and Related Background	 important to safety? How is momentum conserved in collisions? Explain the law of conservation of momentum using the example of a cannon firing a cannonball. 	collision
Information	Instructional Focus	Instructional Resources

		1
<u>DCI</u>	Learning Outcomes	
<text><text><text><text><text><section-header><text></text></section-header></text></text></text></text></text>	 Describe the interaction between two objects in terms of change in momentum of each. Compare the total momentum of two objects before and after they interact. Predict the final velocities of objects after collisions 	Curricular Materials HMH Physics - Momentum and Collisions - Chapter 6-Section2 Conservation of Momentum Lab: https://my.hrw.com/content/hmmof/science/hss2017/tn/gr9- 12/hmd phy 9781328833716 /nsmedia/polyhedron virtual labs/con servationofmomentum/cmhomeframeset.html Graphing Calculator: TI-83/84 Graphing Calculator Activity Guide Sheet: Motion in One Dimension: https://my.hrw.com/content/hmof/science/hss2017/tn/gr9- 12/hmd phy 9781328833716 /teacher/tabpages/teacher/data/chap0 2/graphing calculator/hssp0200t graphcalc ti84.pdf Virtual Lab: https://my.hrw.com/content/hmof/science/hss2017/tn/gr9- 12/hmd phy 9781328833716 /nsmedia/polyhedron virtual labs/ind ex.html Web Resource- http://hmdscienceexplore.hmhco.com/physics/ch06/ Additional Resources: ACT & SAT TN ACT Information & Resources SAT Connections SAT Practice from Khan Academy

	Curriculum Map Feedback Survey												
	Quarter 1			Quarter 2			Qua	rter 3		Quarter 4			
Unit 1	Unit 2	Unit 3	Unit 4	Unit 5 Unit 6		Unit 7	Unit 8		Unit 9	Unit 10	Unit 11	Unit 12	
One Dimensional Kinematics	Two Dimensional Kinematic	Forces	Work and Energy			Heat Energy and Thermo.	Electric Forces, Fields and Energy		Capacitors, Resistors and Circuits	Waves and Sound	Light and Light Behaviors	Nuclear Physics	
3 weeks	2 weeks	4 weeks	3 weeks	3 weeks 3 weeks		2 weeks	4 we	eeks	3 weeks	3 weeks	4 weeks	2 weeks	
	UNIT 5: Momentum [1 week]												
	Overarching Question(s)												
		Hov	v can one	explain and pre	dict interactio	ns between obje	ects and v	within sy	stems of objects?)			
Unit, Less	Unit, Lesson Length Essential Question							Vocabulary					
Unit 5	Unit 5 1 week Essential Questions							Vocabulary					
Moment	um							Momer collisio	ntum, impulse, per n	rfectly inela	astic collision,	elastic	

DCI Learning Outcomes Curricular Materials PS2: Motion and Stability: Forces and Interactions i. Identify different types of collisions. Curricular Materials PHYS.PS2.6 Using experimental evidence and investigations, determine that Newton's second law of motion defines force as a change in momentum, F = dp/dt. Outcomer Conservation of function energy in perfectly inelastic collisions. Compare conservation of nomentum and collisions - Chapter 6-Section3 Previous examinations of Newton's second law have been limited to instances with constant forces. This standard expands that discussion to include instances where the objects interact with each other. To maximize the quality of experimental investigations, magnets "might be used to create situations where objects "collide' in an elastic manner. Newton's second law can be expressed as F = ma. V(wing acceleration as a change in velocity over a period of time, one arrives at F=ma.(Venig a collection as a change in velocity allows for substitution to produce F = Δp/Δt. Misconceptions Students may think that elastic materials can undergo only elastic collisions. Consider a large brass bell with a	Standards and Related Background Information	Instructional Focus	Instructional Resources
clapper. The material, brass, is very elastic. After the collision, the bell continues to vibrate and give off sound (energy!) for a long time afterwards. The collision isn't elastic even though the materials are. Inelastic materials	DCIPS2: Motion and Stability: Forces and InteractionsStandardPHYS.PS2.6 Using experimental evidence and investigations, determine that Newton's second law of motion defines force as a change in momentum, $F = \Delta p/\Delta t$.ExplanationPrevious examinations of Newton's second law have been limited to instances with constant forces. This standard expands that discussion to include instances where the objects interact with each other. To maximize the quality of experimental investigations, magnets might be used to create situations where objects "collide" in an elastic manner. Newton's second law can be expressed as F = ma. Viewing acceleration as a change in velocity over a period of time, one arrives at F = (mV-mVo)/\Deltat. A final recognition that momentum (p) is a property described by an object's mass and 	 Learning Outcomes Identify different types of collisions. Determine the changes in kinetic energy during perfectly inelastic collisions. Compare conservation of momentum and conservation of kinetic energy in perfectly inelastic and elastic collisions. Find the final velocity of an object in perfectly inelastic and elastic collisions. Find the final velocity of an object in perfectly inelastic and elastic collisions. Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision. 	Curricular Materials HMH Physics - Momentum and Collisions - Chapter 6-Section3 Collision-Lab: https://my.hrw.com/content/hmof/science/hss2017/tn/gr9- 12/hmd phy 9781328833716 /teacher/tabpages/teacher/data/chap0 6/hssp0603t inquiry.pdf Newton's Second Law of Motion Additional Resources: ACT & SAT TN ACT Information & Resources SAT Connections

Science and Engineering Practice	
Planning and carrying out investigations	
Cross Cutting Concepts	
Energy and Matter	

			-			1							
	Quarter 1			Quarter 2		Quarter 3				Quarter 4			
Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Uni	it 8	Unit 9	Unit 10	Unit 11	Unit 12	
One Dimensional Kinematics	Two Dimensional Kinematic	Forces	Work and Energy	Momentum	Circular Motion and Gravitation	Heat Energy and Thermo.		ctric , Fields nergy	Capacitors, Resistors and Circuits	Waves and Sound	Light and Light Behaviors	Nuclear Physics	
3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	3 weeks	2 weeks	4 we	eeks	3 weeks	3 weeks	4 weeks	2 weeks	
		UNIT 6: Circular Motion and Gravitation [3 week] Overarching Question(s) What underlying forces explain the variety of interactions observed?											
Unit, Less		Lesson Ler			Essential Qu	•				Vocabulary	,		
Unit 6 Circular Moti Gravitati	on and	1 week	¢	 What Which of an emotion How 	is meant by unifo does the term ce none of Newton's object that is trav n? Why?	s Laws explains the reling with uniform ption be described :	motion circular	Vocabulary Centripetal acceleration, gravitational force, torque, lever arm			"m		

Standards and Related Background Information	Instructional Focus	Instructional Resources
DCI	Learning Outcomes	
PS2: Motion and Stability: Forces and Interactions Standard PHYS.PS2.3 Algebraically solve problems involving arc length, angular velocity, and angular acceleration. Relate quantities to tangential magnitudes of translational motion. PHYS.PS2.14 Plan and conduct an investigation to provide evidence that a constant force perpendicular to	 Analyze and solve problems related to rotational motion and torque Solve problems involving centripetal acceleration. Explain how the apparent existence of an outward force in circular motion can be explained as inertia resisting the centripetal force. 	Curricular Materials Curricular Materials HMH Physics Circular Motion- Chapter 7 Lab-Circular Motion: https://my.hrw.com/content/hmof/science/hss2017/tn/gr9- 12.0 https://my.hrw.com/content/hmof/science/hss2017/tn/gr9-
an object's motion is required for uniform circular motion ($F = m v^2 / r$). Explanation Though not explicitly stated, it is beneficial to develop this standard in the same manner which PHYS.PS2.1 is used to develop PHYS.PS2.2. In doing so, students can parallel rotational properties to translational properties, e.g., arc length can be seen as the rotational equivalent to displacement in the translational world. In doing so, radians become a logical unit of measure for rotational displacement. Since neither torque, nor moment of inertia are addressed in this course, discussions can be limited to considering only kinematics and not venturing into the realm of rotational dynamics.	The force required to keep a body revolving in a circular path is proportional to the mass of the body, and inversely proportional to the radius of the path of revolution. $F = mv^2/r$	12/hmd_phy_9781328833716_/teacher/tabpages/teacher/data/chap0 7/hssp0700t_lab_a.pdf Virtual Lab: https://my.hrw.com/content/hmof/science/hss2017/tn/gr9- 12/hmd_phy_9781328833716_/nsmedia/polyhedron_virtual_labs/centripeta lforce/cfhomeframeset.html Web Resource: http://hmdscienceexplore.hmhco.com/physics/ch07/ Additional Resources: ACT & SAT TN ACT Information & Resources SAT Connections SAT Practice from Khan Academy
Circular motion requires a balance of two factors: a velocity which will carry an object forward and a force perpendicular to the object's velocity. This perpendicular force will cause the object's trajectory to curve inwards in the direction of the force, while continuing to travel forward. Building on a student's understanding of projectile motion, it should be made evident that the object's velocity will not change as there is no component to the force parallel to the object's		

motion. Investigations can be performed by selecting	
variables which students hypothesize will have an effect	
on the motion of an object moving in a circular pattern.	
If force sensors are available, this lab can be done by	
measuring the centrally directed force. Without force	
sensors, students can perform their investigation using	
a loose string passing through the center of a hollow	
tube. A measured hanging mass on the loose end of the	
string can be used to determine the tension force when	
the uniform circular motion is achieved. Discussions	
should also include circular paths that may not be	
complete circles, such as the apex of a hill or a curve in	
the road. (It is essential to clearly distinguish between	
uniform circular motion and rotational motion.)	
,	
<u>Misconceptions</u>	
Some students will have difficulty with terminology at	
this point because of the previous familiarity with the	
term centrifugal. It is important to emphasize the	
distinction between centripetal (center-seeking) and	
centrifugal (center-fleeing). To avoid reinforcing this	
misconception, avoid using the term centrifugal	
Science and Engineering Practice	
Using mathematics and computational thinking	
computational time in the computational time ing	
Diamaina and annuina and insue dia diama	
Planning and carrying out investigations	
Cross Cutting Concepts	
Scale, Proportion, and Quantity	

	Quarter 1			Quarter 2		Quarter 3					Quarter 4			
Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7 Unit 8		t 8	Unit 9	Unit 10	Unit 11	Unit 12		
One Dimensional Kinematics	Two Dimensional Kinematic	Forces	Work and Energy	Momentum	Circular Motion and Gravitation	Heat Energy and Thermo.	Thermo. Forces, and En		Electric Forces, Fields and Energy		Capacitors, Resistors and Circuits	Waves and Sound	Light and Light Behaviors	Nuclear Physics
3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	3 weeks	2 weeks	2 weeks 4 weeks		3 weeks	3 weeks	4 weeks	2 weeks		
	UNIT 6: Circular Motion and Gravitation [3 week] Overarching Question(s)													
			V	Vhat underlying		n the variety of i	-	ns obse	rved?					
Lesson Length Unit, Lesson					Essential Question Vocabulary					,				
Unit 6 Circular Moti Gravitati	on and	1 weel	K	and w • What is univ • What densit	is Newton's Law yhy is it importan does it mean who versal? is a gravitational	of Universal Gravit t? en we say that grav field? What does t ive to do with the s	ritation	Vocabulary Centripetal acceleration, gravitational force, torque, mass						

Standards and Related Background Information	Instructional Focus	Instructional Resources
DCI	Learning Outcomes	Curricular Materials
DCIPS2: Motion and Stability: Forces and InteractionsStandardPHYS.PS2.9 Use Newton's law of universal gravitation, to calculate the gravitational forces, mass, or distance separating two objects with mass, given the information about the other quantities.ExplanationWhile the focus of this standard is on determining the 	 Given Newton's laws of motion, analyze scenarios related to inertia, force, and action-reaction. Given various examples of quantities, categorize them as scalar or vector quantities. 	Curricular Materials HMH Physics - Circular Motion- Chapter 7 Lab: Gravitational Field Strength: https://my.hrw.com/content/hmof/science/hss2017/tn/gr9- 12/hmd_phy_9781328833716_/teacher/tabpages/teacher/data/chap07/hssp0 702t_quicklab.pdf Virtual Lab: Centripetal Force: https://my.hrw.com/content/hmof/science/hss2017/tn/gr9- 12/hmd_phy_9781328833716_/nsmedia/polyhedron_virtual_labs/centripeta Iforce/cfhomeframeset.html Web Resource: http://hmdscienceexplore.hmhco.com/physics/ch07/ Additional Resources: ACT & SAT TN ACT Information & Resources SAT Connections SAT Practice from Khan Academy

Quarter 1			Quarter 2			Quarter 3		Quarter 4			
Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8	Unit 9	Unit 10	Unit 11	Unit 12
One Dimensional Kinematics	Two Dimensional Kinematic	Forces	Work and Energy	Momentum	Circular Motion and Gravitation	Heat Energy and Thermo.	Electric Forces, Fields and Energy	Capacitors, Resistors and Circuits	Waves and Sound	Light and Light Behaviors	Nuclear Physics
3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	3 weeks	2 weeks	4 weeks	3 weeks	3 weeks	4 weeks	2 weeks
UNIT 6: Momentum [3 week] Overarching Question(s) What underlying forces explain the variety of interactions observed?											
Lesson Length Unit, Lesson		ngth	Essential Question				Vocabulary				
Unit 6 1 week Circular Motion and Gravitation		 How In wh some How What 	In what ways do we witness the effects of something having energy? How does energy go through changes?		rergy? Fects of Force, static						

Standards and Related Background Information	Instructional Focus	Instructional Resources
DCI	Learning Outcomes	
 DCI PS2: Motion and Stability: Forces and Interactions Standard PHYS.PS3.8 Communicate scientific ideas to describe how forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space. Explain how energy is contained within the field and how the energy changes when the objects generating and interacting with the field change their relative positions. PHYS.PS3.14 Recognize and communicate information about energy efficiency and/or inefficiency of machines used in everyday life. In 6.PS3.1, students are introduced to the different types and mechanisms for storing energy. This standard should include quantification of the amount of energy stored as objects change positions within those fields. It is important that students can reconcile that objects do not store potential energy, rather that these potential energies are stored within the fields. Changing position within the field results in a change in potential energy as work 	 Learning Outcomes Distinguish between torque and force. Calculate the magnitude of a torque on an object. Calculate the mechanical advantage of a simple machine. Phenomenon	Curricular Materials HMH Physics Circular Motion- Chapter 7 Lab Machines and Efficiency: https://my.hrw.com/content/hmof/science/hss2017/tn/gr9 12/hmd_phy_9781328833716_/teacher/tabpages/teacher/ data/chap07/hssp0704t_coreskilllab.pdf Additional Resources: ACT & SAT TN ACT Information & Resources SAT Connections SAT Practice from Khan Academy

is done either by the field (the potential energy	
decreases) or on the field (the potential energy	
increases).	
An understanding of conservation of	
energy should lead to conversations about the	
efficiency of a device. A well designed device	
should utilize as much of the available energy	
as possible for the desired task. Other energy	
will be converted to forms, such as heat and	
noise, which may not be immediately useful	
based on the intended use for the device.	
based on the intended use for the device.	
Misconceptions	
1. Many students may think that any	
force acting on an object may cause it	
to rotate.	
2. Reinforce the idea that machines do	
not create something from nothing. If	
friction is disregarded, machines use	
the same amount of energy to achieve	
the goal	
Science and Engineering Practice	
Engaging in argument from evidence	
Cross Cutting Concepts	
Energy and Matter	

Curriculum and Instruction- Science							
	RESOURCE TOOLKIT						
	Quarter 2 Physics						
Textbook Resources	DCIs and Standards DCI Standard	Videos <u>Khan Academy</u> <u>Illuminations (NCTM)</u> <u>Discovery Education</u> <u>The Futures Channel</u> <u>The Teaching Channel</u> <u>Teachertube.com</u> <u>Acceleration Lab:</u> <u>https://my.hrw.com/content/h</u> <u>12/hmd_phy_9781328833710</u> <u>p02/hssp0202t_probewarelat</u>	6_/teacher/tabpages/teacher/data/cha	ACT & SAT TN ACT Information & Resources ACT College & Career Readiness Mathematics Standards SAT Connections SAT Practice from Khan Academy			